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ABSTRACT

Lattice Boltzmann Method is used to study a nonideal fluid in a periodic box. Below the critical
temperature (7.), phase separation occurs which results in two separate liquid and gaseous phase.
Three different discretisation schemes, using two different equations of state are compared for accuracy
by comparing the final phase densities (pr, pg) at different temperature (T') values with their
corresponding Maxwell construction.



Contents

1

Theoretical Background

1.1 Numerical Stability . . . . .. .. ..
1.2 Discretisation . . . . .. ... .. ..

Problem Statement

Solution Methodology

3.1 Lattice Boltzmann Method . . . ..
3.2 Discretisation Schemes . . . . . . ..

3.3 Periodic Boundary Condition (PBC)
Result

Conslusion



1 Theoretical Background

An equation of state relates the pressure P, volume V and temperature T of a physically homogeneous
system in the state of thermodynamic equilibrium. The ideal gas equation of state is the most simple
thermodynamic representation of a fluid. When trying to model real fluid the ideal gas equation of state
faces limitations as it assumes point particles without any attractive or repulsive forces between them.
A modification of the ideal gas law was proposed by Johannes D. van der Waals in 1873 [3] to consider
molecular size and molecular interaction forces. Van der waal’'s EOS (Equation of State) is one of the
two EOS considered for this project. Equation of state is given by,
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where, N is total number of particles, k is Boltzmann constant, and p is density.

The constants a and b have positive values and are characteristic of the individual gas. The constant a
provides correction for the intermolecular forces. b is the volume excluded by a mole of molecules as
molecules are considered to have finite size. At small values of pressure and volume constants a and b
approaches zero as gases tend to behave ideally. Critical temperature(7;), Critical Volume(V,) and
Critical Pressure(P,) in terms of a and b are given by,
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The Van der Waal’s EOS using dimensionless quantities is
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where B

P=P/Ps, p=p/p., T=T/Tc.
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Figure 1: Van der Waal’s Isotherms

Fig.1 represents the variation of reduced pressure values (P/P.) with reduced density values (p/p.) for
various reduced temperature values (T'/T¢).



The Carnahan-Starling equation of state is an approximate equation of state for the hard sphere model
of the fluid, where molecules are considered to have finite volume and exhibit attractive and repulsive
forces. It is given by
1+n+7° -7 9
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where 77 = pb/4. Carnahan-Starling EOS is provides larger density ratios at temperatures below Critical
Temperature as compared to Van der Waal EOS.

1.1 Numerical Stability

The numerical solutions to differential equations may exhibit unstable behaviour. That is, the
computational results may include exponentially growing and sometimes oscillating features that bear
no relation to the solution of the original differential equation. This type of behaviour is referred to as
a computational instability or numerical instability.

If the error on the data during various time steps does not get amplified, the algorithm is said to have
numerical stability for those certain set of input parameters. In general, it would be desirable to have a
means of predicting when computational as opposed to physical instabilities can occur. Unfortunately,
no general method has yet been devised.

1.2 Discretisation

In the real world, the physical phenomena are macroscopically continuous in nature that is, for
example, transition from one phase of matter to another phase takes place in continuous manner.
‘When physical phenomena are simulated in computational environment then those physical phenomena
are treated in discrete manner instead of continuous. Computational simulation is done numerically
that is computer deals with numerical data and that data collectively simulates the whole physical
process. This is known as discretisation.

During discretisation, as the macroscopic continuous process is simulated using discrete numerical data,
approximation is inherited in the process, which in turn gives rise to errors. When actual physical
phenomena are simulated in computational environment various techniques and expressions are used
for the discretisation. These techniques and expressions are called as discretisation schemes. Different
discretisation schemes are used to reduce the errors as much has possible when compared with its
theoretical values.

2 Problem Statement

We intend to model a fluid having initial temperature (1") below its Critical Temperature (I¢) to
obtain following;:

e Final density in given domain after a specified time period during which system evolves from its
initial state.

e Comparison of the results with theoretical Maxwell Construction[2] to determine accuracy of
discretisation schemes.



3 Solution Methodology

3.1 Lattice Boltzmann Method

Lattice Boltzmann method (LBM) is a methodology based on the microscopic particle models and

mesoscopic kinetic equations. Its strength lies in the ability to easily represent multiphase flows [4].

The origin of this method is in the molecular description of a fluid and it can directly incorporate
physical terms stemming from a knowledge of the interaction between molecules [1].
Generalised Algorithm:

1. Selection of Site

2. Advectiont of incoming particles from direct neighbouthood

3. Collision of new set of particles that have just been advected
4. Post collision rearrangement
5

. Next sight selection

3.2 Discretisation Schemes

We know,
oF
P=—-——
ov’
where F' = Helmholtz free energy, V' = Volume. For N number of particles, let
F/V _f
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from where one obtains,
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where p = Chemical potential.

Hence, we get
VP =pVu+uVp—-Vf

We test three differnt discretisation schemes for equation (6). Those are as follows,

1. Scheme 1:
2. Scheme 2:
VP:P@HJrM@pf@f
3. Scheme 3:
vp = Pitt ;f’i*@;H_ Hit1 ;uiﬂ@p_@f



3.3 Periodic Boundary Condition (PBC)

Periodic Boundary Conditions are used to model infinitely large systems. This is equivalent to
considering an infinite, space-filling array of identical copies of the simulation region. The central idea
is to predict the properties of a bulk material by simulating a small (finite) system. We assume that,
infinite number of such small system (viz. simulation box) exist everywhere. All the molecular features
are identical in each of the boxes.
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Figure 2: Schematic for Periodic Boundary Condition
Source: hitp://isaacs.sourceforge.net/phys/pbe.html

Here we have central box with certain arrangement of particles. According to PBC, the same
arrangement is present in all the boxes surrounding it. Any change takes place within this control box,
will replicate in all the boxes. If a particle leaves the central box along any direction, its image particle
will enter the box from opposite direction.

4 Result

‘We worked with dimensionless quantities in which we scaled down Temperature 7" and Density p to
T/Tc and p/pe respectively. Input parameters for the code are 8, T/T,, p/p.. Where £ is defined as,

dt

/8:2‘9/—§+dt’

where 6y = pKpT and V), = Kinematic Viscosity.

e Van der Waal’s Equation of State

1. Scheme 1 (Fig.3 and Fig.4 ):
— When compared for T'/T, values below 0.85, increasing 8 value decreses the accuracy
and increases the stability for lower values of T'/T..
— Decresing 8 geneartes numerical instability for lower initial values of p/p..
— Decreasing p/p. increases the accuracy.
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Figure 3: Scheme 1, 8 = 0.7
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Figure 4: Scheme 1, f =0.9

2. Scheme 2 (Fig.5):

— Decreasing p/p. decreses the accuracy.

— Keeping p/p. constant while decreasing 8 doesn’t affect in making lower T/, values
numerically stable.

— For beta above 0.7, increasing 8 decreses the stability.
3. Scheme 3 (Fig.6):

— This scheme is stable only for T'/T, values greater than 0.88. Hence, effect of 8 on the
accuracy cannot be determined as T'//T,. < 0.85 is not possible.

— Decreasing initial p/p. has no effect on final accuracy.
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Figure 6: Scheme 3, 5 =0.9

e Carnahan-Starling Equation of State

1. Scheme 1 (Fig.7):
— Beta is having negligible effect on accuracy.
— Increasing beta decreases the stability for lower values of T'//T,.. Decreasing p/p.
increases the accuracy.
2. Scheme 2 (Fig.8):
— Decreasing initial value of p/p. increases the accuracy.
— Decreasing § makes lower values of p/p. numerically stable.
— Keeping 8 constant while decreasing p/p. makes lower values of T'/T,. numerically stable
up to a certain limit.
3. Scheme 3:
This scheme gives highly unstable results, irrespective of values of input parameter. Hence,
no analysis of this scheme for Carnahan-Starling Equation of State could be done.
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Figure 8: Scheme 2, § = 0.7

5 Conslusion

When simulation output is compared with theoretical data, it is concluded that scheme 1 is the most
accurate of all the three schemes for both equations of state. When there is requirement of p/p. values
at T'/T, values less than 0.84, scheme 2 is preferred as scheme 1 is numerically unstable in this range.
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